【B站保姆级视频教程:Jetson配置YOLOv11环境(六)PyTorchTorchvision安装】

news/2025/2/4 10:02:15 标签: YOLO, pytorch, 人工智能, Torchvision, Jetson, 教程

Jetson配置YOLOv11环境(6)PyTorch&Torchvision安装

文章目录

  • 1. 安装PyTorch
    • 1.1安装依赖项
    • 1.2 下载torch wheel 安装包
    • 1.3 安装
  • 2. 安装torchvisiion
    • 2.1 安装依赖
    • 2.2 编译安装torchvision
      • 2.2.1 Torchvisiion版本选择
      • 2.2.2 下载torchvisiion到Downloads目录下
      • 2.2.3 编译安装torchvision
    • 2.3 安装过程可能出现的bug
  • 3. 验证

1. 安装PyTorch

1.1安装依赖项

sudo apt install libopenblas-dev

libopenblas-dev作用:提供优化的BLAS(Basic Linear Algebra Subprograms)库,用于高效执行线性代数运算。
影响:PyTorch依赖于高效的线性代数运算来加速深度学习模型的训练和推理。libopenblas-dev提供了优化的BLAS实现,可以显著提升PyTorch的性能,尤其是在CPU上运行时。

1.2 下载torch wheel 安装包

前往PyTorch for Jetson,下载所安装的jetpack版本支持的最高版本的torch wheel 安装包到Downloads目录下。

cd /Downloads
wget https://developer.download.nvidia.cn/compute/redist/jp/v512/pytorch/torch-2.1.0a0+41361538.nv23.06-cp38-cp38-linux_aarch64.whl

例如:jetpack5.1.x对应下图中红框的torch安装包,需注意Python 版本为 3.8。

在这里插入图片描述

1.3 安装

pip install torch-2.1.0a0+41361538.nv23.06-cp38-cp38-linux_aarch64.whl

2. 安装torchvisiion

2.1 安装依赖

pip install numpy requests Pillow
sudo apt install libjpeg-dev libpng-dev zlib1g-dev libpython3-dev libavcodec-dev libavformat-dev libswscale-dev 

2.2 编译安装torchvision

torchvision暂未发布直接能pip安装的whl版本,因此直接从源码编译。

2.2.1 Torchvisiion版本选择

以torch2.1.0为例,对应的torchvisiion版本为0.16.x。
torch与torchvision版本对应关系

torchtorchvisionPython
main / nightlymain / nightly>=3.9, <=3.12
2.50.20>=3.9, <=3.12
2.40.19>=3.8, <=3.12
2.30.18>=3.8, <=3.12
2.20.17>=3.8, <=3.11
2.10.16>=3.8, <=3.11
2.00.15>=3.8, <=3.11

2.2.2 下载torchvisiion到Downloads目录下

(1)网络ok的话,直接克隆到本地。

cd ./Downloads
git clone --branch v0.16.2 https://github.com/pytorch/vision

(2)网络不行clone慢的话,直接下载压缩包到PC

在这里插入图片描述
再上传jetson,解压即可

unzip vision-0.16.2.zip

2.2.3 编译安装torchvision

cd vision-0.16.2					# 进入torchvision目录
export BUILD_VERSION=0.16.2  		# 将BUILD_VERSION环境变量设置为值 0.16.2  
python3 setup.py install --user		# 使用 Python 的 setuptools 工具将vision包安装到当前用户的本地目录中

需要等待30min左右,出现以下提示则安装成功

在这里插入图片描述

安装成功后退出torchvision的安装目录再import torchvision进行验证,否则会出现以下warning

(pytorch) nx@nx-desktop:~/Downloads/vision-0.15.2$ python
Python 3.8.18 (default, Sep 11 2023, 13:19:25) 
[GCC 11.2.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torchvision
/home/nx/Downloads/vision-0.15.2/torchvision/io/image.py:13: UserWarning: Failed to load image Python extension: ''If you don't plan on using image functionality from `torchvision.io`, you can ignore this warning. Otherwise, there might be something wrong with your environment. Did you have `libjpeg` or `libpng` installed before building `torchvision` from source?
  warn(
/home/nx/Downloads/vision-0.15.2/torchvision/__init__.py:25: UserWarning: You are importing torchvision within its own root folder (/home/nx/Downloads/vision-0.15.2). This is not expected to work and may give errors. Please exit the torchvision project source and relaunch your python interpreter.
  warnings.warn(message.format(os.getcwd()))

2.3 安装过程可能出现的bug

若出现error: [Errno 2] No such file or directory: ':/usr/local/cuda/bin/nvcc',请参照:

jetson编译torchvision出现 No such file or directory: ‘:/usr/local/cuda/bin/nvcc‘

3. 验证

查看pytorch运行时真正调用的cuda、cudnn版本:

python -c "import torch; import torchvision; print('PyTorch version:', torch.__version__); print('CUDA available:', torch.cuda.is_available()); print('CUDA version:', torch.version.cuda); print('cuDNN enabled:', torch.backends.cudnn.enabled); print('cuDNN version:', torch.backends.cudnn.version()); print('Torchvision version:', torchvision.__version__)"

在这里插入图片描述


http://www.niftyadmin.cn/n/5841472.html

相关文章

模型蒸馏(ChatGPT文档)

文章来源&#xff1a; https://chatgpt.cadn.net.cn/docs/guides_distillation 模型蒸馏 使用蒸馏技术改进较小的模型。 模型蒸馏允许您利用大型模型的输出来微调较小的模型&#xff0c;使其能够在特定任务上实现类似的性能。此过程可以显著降低成本和延迟&#xff0c;因为较小…

全栈开发:使用.NET Core WebAPI构建前后端分离的核心技巧(一)

目录 cors解决跨域 依赖注入使用 分层服务注册 缓存方法使用 内存缓存使用 缓存过期清理 缓存存在问题 分布式的缓存 cors解决跨域 前后端分离已经成为一种越来越流行的架构模式&#xff0c;由于跨域资源共享(cors)是浏览器的一种安全机制&#xff0c;它会阻止前端应用…

Docker入门篇(Docker基础概念与Linux安装教程)

目录 一、什么是Docker、有什么作用 二、Docker与虚拟机(对比) 三、Docker基础概念 四、CentOS安装Docker 一、从零认识Docker、有什么作用 1.项目部署可能的问题&#xff1a; 大型项目组件较多&#xff0c;运行环境也较为复杂&#xff0c;部署时会碰到一些问题&#xff1…

【番外】lombok在IDEA下失效的解决方案

IDEA 的Lombok在编译后&#xff0c;发现类明明加了注解&#xff0c;但找不到方法 多数情况下&#xff0c;是因为lombok的版本切换时发生了错误。 这时点击setting->Build,Execution,Deployment->Compiler->Annotation Processors 选中失效的模块&#xff0c;把process…

使用Pytorch训练一个图像分类器

一、准备数据集 一般来说&#xff0c;当你不得不与图像、文本或者视频资料打交道时&#xff0c;会选择使用python的标准库将原始数据加载转化成numpy数组&#xff0c;甚至可以继续转换成torch.*Tensor。 对图片而言&#xff0c;可以使用Pillow库和OpenCV库对视频而言&#xf…

(手机安卓版)植物大战僵尸幼儿园版本,开启你的冒险之旅!

欢迎来到植物大战僵尸中文版&#xff0c;园长Jen已准备好迎接你的挑战&#xff01;在这个充满乐趣和策略的游戏中&#xff0c;你将体验到多种游戏模式&#xff0c;每种模式都带来不同的挑战和乐趣。 游戏模式&#xff1a; 冒险模式&#xff1a;踏上刺激的冒险旅程&#xff0c;…

全域旅游景区导览系统小程序独立部署

**全域旅游景区导览系统&#xff1a;数字化赋能景区智慧化升级** ——打造一站式信息服务生态&#xff0c;助力旅游产业高质量发展 --- ### **一、行业痛点&#xff1a;传统景区服务模式面临挑战** 在旅游消费需求多元化、个性化发展的今天&#xff0c;全国景区普遍面临…

从TinyZero的数据与源码来理解DeepSeek-R1-Zero的强化学习训练过程

1. 引入 TinyZero&#xff08;参考1&#xff09;是伯克利的博士生复现DeepSeek-R1-Zero的代码参仓库&#xff0c;他使用veRL来运行RL强化学习方法&#xff0c;对qwen2.5的0.5B、1.5B、3B等模型进行训练&#xff0c;在一个数字游戏数据集上&#xff0c;达到了较好的推理效果。 …